
MPI Interface
Documentation

Version 1.4.2

1 Table of Contents
1. Table of Contents 1-2

2. General Information 3

3. Introduction to the Mobile-PI-Interface 4-5

3.1. Change Log 5-9

3.2. Authentication 9-10

3.3. Services 10

3.3.1. GPS Service 10-11

3.3.2. Logical Positioning 11-13

3.3.3. Train Binding 13-15

3.3.4. Live Updates 15-16

3.3.5. Stop On Demand 17

3.3.6. Schedule Update 17-18

3.3.7. On demand schedules 18-19

3.3.8. Display Control 19

3.3.9. Audio Control 19-20

3.3.10. Diagnostics 20-21

3.3.11. Driver Message 21-22

3.4. Transports 22

3.4.1. WebSocket Transport 22-24

MPI Documentation 1

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

4. DiLoc JSON Schedule Format 25

4.1. Introduction 25-32

4.2. Schema 32

5. Index 33

MPI Documentation 2

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

2 General Information

The Mobile-PI-Interface specification is the intellectual property of CN-Consult GmbH.　

All modifications and extensions to this interface must be coordinated and agreed with CN-
Consult GmbH. Requested changes are documented by CN-Consult GmbH and made available
freely to everyone interested.

The detailed developer documentation (including the xml-schema, detailed explanations and
examples) can be requested from the CN-Consult GmbH-website. Registered users will
subsequently receive all updates on the Mobile-PI-Interface specification via Email.

The specification may be freely used by any company wishing to implement a communication
interface between mobile and central passenger information systems, as long as the
specification is not modified or extended without cooperation with CN-Consult GmbH. (as
stated above)

MPI Documentation 3

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

https://www.diloc.de/mpi/

3 Introduction to the Mobile-PI-Interface

The Mobile-PI-Interface provides a way for mobile passenger information (MPI) systems to send
and receive data from a DiLoc|Motion or other servers.

All data that is sent and received through this interface is categorized into services. A client may
only implement one service, but there are services that depend on other services so that they
work correctly.

Services
Each service describes a number of messages that may be interchanged between client and
server when the service is used.

Implemented Services
The following services are currently available:

Service Description Dependencies Status

GPS Provides the ability to send gps location
information.

- Final

Logical
Positioning

Provides the ability to send logical
positioning information.

- Beta

Schedule
Update

Provides the ability to notify the client that
updated schedules are available.

- Final

Train
Binding

Provides the ability to bind and unbind train
numbers from clients.

- Final

Live
Updates

Provides the ability for a train to receive live
updates about forecasts, connections, etc.

Train Binding
Level1

Final

Stop on
Demand

Provides the ability to send information
about requested on demand halts.

Train Binding
Level1

RC

MPI Documentation 4

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

Display
Control

Provides the ability to control the passenger
information displays in the train.

Train Binding
Level1

Beta

Audio
Control

Provides the ability to control the audio
devices for passenger information.

Train Binding
Level1

RC

Diagnostics Provides the ability to send diagnostic
information to the server.

- RC

On
Demand
Schedules

Provides the ability to request additional
spontaneous train schedules from the
server.

Schedule
Update

Beta

Driver
Message

Provides the ability to send messages to the
driver from the server and allows to confirm
received messages.

-

Transports
The communication may be realized with different transports. The data-format is always the
same but the transport differs slightly. Currently only the WebSocket transport is implemented.
In future a direct transport via a standard TCP/IP connection and a HTTP-based transport may
be realized.

Communication-Format
The communication is entirely done in XML. The MobilePI
Schema
(on-line
documentation)
describes the format in detail. In order to be able to authenticate the communication between
server and client a hash-based authentication is used.

Version
This is Version
1.4.2 of the Mobile-PI-Interface. For the changes in this release have a look at
the change log.

Service Description Dependencies Status

MPI Documentation 5

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

3.1 Change Log

This contains change information about the different releases of the specification.

Version 1.4.2
This version contains no schema-related changes against the previous version. So schema-wise
this version is 100% the same as the already released version 1.4.1.

The only change in this version relates to general information about the MPI specification, how
it may be distributed, extended etc..

Version 1.4.1
This version fixes a critical error in the schema: the tag nextroutestationdistance
('nextroutestationdistance
Element'
in
the
on-line
documentation) is now optional as this
cannot be calculated when the train arrives at the destination station.

Version 1.4
The documentation now features a refreshed
design and there is a new page that contains
example-messages for additional reference. These examples are also packaged into the web-
based documentation into the folder xml-examples. Also the xsd-file
('MobilePI.xsd'
in
the
on-line
documentation) is now always packaged into the web-based documentation so it is
readily available within the documentation.

The outer message
('message
Element'
in
the
on-line
documentation)-element may now
contain an mpi-version
('mpiversion
Attribute'
in
the
on-line
documentation) which allows
the client to specify the version of the mpi spec it supports.

This version specifies the folling new services:

Sending messages to the driver with the addition of the new DriverMessage service.
The new LogicalPositioning service allows to transmit logical position-data as additional
enhancement to the server.

Changes to existing services:

The gpsdata
('gpsdata
Element'
in
the
on-line
documentation)-message was
enhanced to optionally contain an accuracy value.
The forecast-message may now contain additional advices
('advices
Element'
in
the
on-

MPI Documentation 6

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

line
documentation) per station. These can be triggered flexibly and allows the server to
directly send station-specific information to the client.

Version 1.3.2
The StopOnDemand service was updated to allow the messages to flow in both directions.
Note: This does not introduce new/changed messages, only the documentation is updated.

This version updates the XSD and fixes the value for the DiLoc-Json-Schedule format to be djsf
instead of djs.

Version 1.3.1
This version only updates the XSD and adds new enumerations for the connection category.
Added values are: ropeway, funicular and ship.

Version 1.3
This version brings the possibility for clients to retrieve automatic connection announcements
from the server.

Added audiourl and audioformat to the connections
('connections
Element'
in
the
on-
line
documentation)-tag
Made audioformat attribute optional as it is only available when a audiourl is present.

To ensure backwards compatibility this will only be sent from a DiLoc|Rail-Server if the feature-
level of the mpi service is set to 1.3 or greater.

Version 1.2.2
Documented support to convert mp3-files to other sampling rates in audiourl
attribute
('lang
Element'
in
the
on-line
documentation) and url
tag
('url
Element'
in
the
on-
line
documentation).

Version 1.2.1
Fixed a bug in the schema: The <value
('value
Element'
in
the
on-line
documentation)>-tag from systemstatus should be an extension of xs:string.
The diagnostics and audiocontrol services where promoted to RC as parts of them are

MPI Documentation 7

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

already implemented.

Version 1.2
The updateforecast
('updateforecast
Element'
in
the
on-line
documentation)-
message now also supports containing information about departure times and lateness
inside the <station
('station
Element'
in
the
on-line
documentation)>-tag. (This will be
sent from DiLoc 2.7-Beta9 and later)
Fixed a bug in the schema: The <connections
('connections
Element'
in
the
on-line
documentation)>-tag may also be empty and contain no <connection>-tag if there are
no valid connections at a station anymore.
Fixed a typo in the systemstatus
('systemstatus
Element'
in
the
on-line
documentation)-message: The attribute is now correctly named softwareversion instead
of sofwareversion.

Version 1.1.1
Fixed a bug in the schema: The sequence for <lang>-tags inside the <advice
('advice
Element'
in
the
on-line
documentation)>-tag was incorrectly set to a maximum of 1. This was corrected
and it is "unbounded" now.

No other changes where made in this version.

Version 1.1
Improved the Train Binding service by allowing clients to remote-bind other trains by
using the server as a relay. This a backwards-compatible change that allows certain
messages to be send in both directions and also adds some new messages. To
differentiate between different levels of implementations the service is now separated into
three levels: Level 1 matches with the specification Version 0.5-1.0, Level 2 and Level 3
define the new features added in 1.1
Improved the outage information of the Live Updates service by adding ready made
advice texts and audio-files to the outage information. This allows clients to easily display
and announce information about the outage without the need to implement TTS or other
mechanisms on the train.

Version 1.0
Improved the Live Updates service by adding outage information to the updateforecast
('updateforecast
Element'
in
the
on-line
documentation) message. This is a

MPI Documentation 8

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

backwards-compatible change, so existing clients implementing the live-updates service
should not be affected by this additional information.
Documented the DiLoc JSON Schedule Format.

Version 0.9
New Services: On Demand Schedules and Diagnostics.
Improvements to the audio control service (can now also send an announcement as
audio-file).

Version 0.1 - 0.5
Development of the initial version.

3.2 Authentication

In order to be able to authenticate data that is sent via the interface each message
('message
Element'
in
the
on-line
documentation) must have a hash-attribute. The hash must be built
after some strict rules so that the receiver can verify that the data is coming from a valid sender.

Hash generation rules
The hash is generated differently based on the message direction.

Client -> Server
The hash that a client needs to send to the server is defined as follows:

Pseudo
Code

auth = sha256("client:{partnerid}:{deviceid}")

Where {partnerid} is to be replaced with the partner-id the interface partner gets beforehand

MPI Documentation 9

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

and {deviceid} is to be replaced with the unique device-id identifying the device that sends the
message.

This hash allows the server to authenticate any messages sent from the client and makes it
possible to know from which device or partner a given message is, without transmitting the ids
in clear text.

Server -> Client
The auth hash that is sent to a client is defined as follows:

Pseudo
Code

auth = sha256("server:{partnerid}:{serverid}")

Where {partnerid} is to be replaced with the partner-id of the interface partners. It is the same
partner-id that the client uses to generate its auth key. The server-id is usually always the same
as long as it is not compromised. (See Banning)
This means that the auth-key sent from the server to all clients of the same partner is normally
always the same.

Banning
In order to ban compromised devices or partners the server may delete known partner-ids or
device-ids. After they have been deleted on the server all messages from these devices and or
partners will be dropped. This means it should be easily possible to replace the partner-id or
device-id on the client side if necessary.

In the same way it should also be possible to exchange the serverid on the client side so that
compromised servers may be banned.

3.3 Services

3.3.1 GPS Service

The GPS-Service enables mobile passenger information systems to transmit their current gps-
location to the server.

This is necessary for DiLoc|Rail to properly locate trains and be able to create train-run-
messages when the train travels and to show the correct information on stationery passenger
information systems.

MPI Documentation 10

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

Status
The GPS-Service is currently in status Final. This means that service description is final and no
changes are currently planned.

Used Messages
The messages that are sent in the context of this service are gpsdata
('gpsdata
Element'
in
the
on-line
documentation) and gpsdatareply
('gpsdatareply
Element'
in
the
on-line
documentation). For more information on these tags please consult the corresponding schema
documentation.

Communication
The communication flow for the GPS-Service is mainly from client to server. The client sends
gpsdata messages in regular intervals to the server. The server processes the location
information and replies with a gpsdatareply message.

Requirements
In order for the server being able to make use of the sent locations some requirements must be
followed.

1. Positions must be updated frequently

For the algorithms inside DiLoc to work correctly position-data should be sent at least every 6
seconds. This is necessary to accurately detect halts at a station or through passes at a station.
To not overload the server unnecessarily, data should not be sent more often than in 3 second
intervals.
In case of connection problems the client should buffer as many gpsrecords as possible and
send them when the connection is available again.

2. Data must be sent chronologically

If data from the past is sent to the interface it must be sent in chronological order. This means
that when the Internet-Connection (usually GPRS/3G) of the rolling stock is not available for
some time and the client cannot send the data and saves it to be sent later it must be sent in
chronological order of the acquired position, beginning with the oldest position data.

3.3.2 Logical Positioning

MPI Documentation 11

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

The logical positioning complements the gps positioning but is an optional service.

In contrast to the gps positioning it can also work when gps is not available, for example by
using odometer information from the device.

The logical positioning records contain a reference and distance to the preceeding station and a
reference and distance to the next station. Additionally a status gives more information about
the state the mobile device per positioning record.

The following image illustrates the state that is transmitted on a journey between two stations:

When arriving at a station, the nextroutestation will become the previousroutestation, the
distance will be set to 0 and the nextroutestation will be the next station on the trips route.

Most of the time it is necessary for the client to know the trip-route in advance (think forks) to
be able to determine the logical position. Thus a client may only send the logical position data
when bound to a train.

Status
The LogicalPositioning-Service is currently in status Beta. This means it is still in the
development phase and changes can occur with further revisions of the specification.

Used Messages
This service uses the messages logicalpositioningdata
('logicalpositiondata
Element'
in
the
on-line
documentation) and logicalpositioningdatareply
('logicalpositiondatareply
Element'
in
the
on-line
documentation).

Communication

MPI Documentation 12

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

The communication flow for the logical positioning service is mainly from client to server.

Requirements
In order for the server being able to make use of the sent information some requirements must
be followed.

1. Positions must be updated frequently
For the algorithms on the server side to work correctly position-data should be sent at least
every 10 seconds. This is necessary to be able to track devices in real time. To not overload the
server unnecessarily, data should not be sent more often than in 8 second intervals.
In case of connection problems the client should buffer as many logicalpositionrecords as
possible and send them when the connection is available again.

2. Data must be sent chronologically
If data from the past is sent to the interface it must be sent in chronological order. This means
that when the Internet-Connection (usually GPRS/3G) of the rolling stock is not available for
some time and the client cannot send the data and saves it to be sent later it must be sent in
chronological order of the determined position, beginning with the oldest position data.

3.3.3 Train Binding

The train binding service enables mobile passenger information systems to bind the current
train number to the device.

This is needed on the server side so that the server knows which device/client is currently
operating which train. Many other services (like for example the LiveUpdates or
StopOnDemand-service) depend on this service being implemented correctly by the client for
their part to work correctly.

Since MPI-Interface 1.1 it is also possible that the server can send a message to the client to
inform it that it should now drive a particular train number. (See Remote Train-Binding for more
information about that)

Status
The TrainBinding-Service is currently in status Final. This means that service description is final
and no changes are currently planned.

MPI Documentation 13

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

Used Messages
This service uses the messages bindtrain
('bindtrain
Element'
in
the
on-line
documentation), bindtrainreply
('bindtrainreply
Element'
in
the
on-line
documentation),
unbindtrain
('unbindtrain
Element'
in
the
on-line
documentation) and unbindtrainreply
('unbindtrainreply
Element'
in
the
on-line
documentation) for the actual train-binding.

Additionally it is possible for a client to remotely bind other devices to a train number. This part
of the service uses the relaybindtrain
('relaybindtrain
Element'
in
the
on-line
documentation), relaybindtrainstatus
('relaybindtrainstatus
Element'
in
the
on-line
documentation), relayunbindtrain
('relayunbindtrain
Element'
in
the
on-line
documentation), relayunbindtrainstatus
('relayunbindtrainstatus
Element'
in
the
on-line
documentation).

Note: remotely binding another device to a train number is completely optional and must
only be implemented if for example two devices drive the same train number and have no
means to communicate with each other.

Communication
The communication flow for the TrainBinding-Service is mainly from client to server. The client
sends information about the current binding to the server and the server replies to it.

Since MPI-Interface 1.1 it is also possible that a client may receive a bindtrain message or
unbindtrain message. In this case the communication flow is reversed.

Remote Train-Binding
This provides a solution to let clients bind other clients to trains if they have no direct means of
communication between each other. The server acts as a simple relay that forwards the
message to the other device.

Remote Train-Binding is new as of MPI 1.1. The change is backwards compatible however: DiLoc
will never send bindtrain and unbindtrain-messages on its own to old clients. However if a client
sends a relaybindtrain or relayunbindtrain message then DiLoc will send bindtrain and
unbindtrain messages to other clients. So if one client is capable of sending relaybindtrain and
relayunbindtrain messages all other clients should also be able to process such messages or at
least reply with a proper error message.

Remote train-binding is the only exception where it is allowed to send multiple relaybindtrain
messages shortly after another without waiting that the remote bindtrain was finished. However
if this is used by the client it is in the responsibility of the client to properly correlate incoming
relaybindtrainstatus messages to the previously sent relaybindtrain message. (This can be done
with the train number and the device identifier which should be unique for the time frame of 10

MPI Documentation 14

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

minutes)

Requirements
Since the train-binding service is a core service that many other services depend on its really
important that this is implemented correctly, especially in corner cases.

The server saves the current binding of a device through reconnects and server restarts. That
means if the connection is reestablished the client should have in mind that the server still has
the binding information. This makes it easy to communicate with the server when the
connection is reestablished because nothing special has to be sent before other messages if the
binding did not change. However if the binding changed during a time where no connection to
the server was available, the client should rebind as soon as possible when the connection is up
again. For efficiency reasons however the client should only rebind if the binding really
changed.

Implementation levels
This service may be implemented in three levels of completeness.

Level 1 (MPI 0.5)

This means the client sends bindtrain and unbindtrain messages correctly and handles
bindtrainreply and unbindtrainreply messages correctly. This is the most basic level that every
client should implement.

This also matches with what MPI 0.5 specified for this service. In this regard nothing changed, so
the new messages are pure addons that do not break backwards compatibility. All clients that
fully implemented the TrainBinding Service of Version 0.5 are now compatible with Level 1 of
the service.

Level 2

In addition to Level 1 this means the client is also able to process bindtrain and unbindtrain
messages and it sends correct bindtrainreply and unbindtrainreply messages.

Level 3

In addition to Level 2 this means the client is also able to send relaybindtrain and
relayunbindtrain messages and processes relaybindtrainstatus and relayunbindtrainstatus
messages.

MPI Documentation 15

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

3.3.4 Live Updates

The LiveUpdates-Service provides mechanisms send up to date information to the train
regarding its forecast and train connections.

Status
The LiveUpdates-Service is currently in status RC. This means that service description is near
final and there are no planned or expected changes to how the service works. However if there
are any problems found it is still possible to change the specification.

Used Messages
The server sends the messages updateconnections
('updateconnections
Element'
in
the
on-
line
documentation) and updateforecast
('updateforecast
Element'
in
the
on-line
documentation). The updateconnections-message is used to update the connections that
passengers may reach at a certain station. The updateforecast-message is used to send lateness
and outage information to the client. This is for example useful because the server knows about
latenesses in advance for example because of the need to wait for another train at a station in
the future.

As of DiLoc 2.7 the forecast also contains information about an outage the train will have in the
future. This is also helpful so that the passenger information system may inform the passengers
in advance that they must leave the train because of construction work or other reasons. The
outage information contained in the forecast can be used to generate announcements and
show messages in indoor TFT-Screens or enrich the displayed pearl-chain with information
about the outage. The outage also contains ready made messages in different languages and
corresponding audio files that may be shown as message and played as announcements. When
and how these information is displayed is up to the software in the train.

Currently all clients automatically get this data sent after a train is bound to it. For later versions
this may be configurable per client or even be dynamic in a sense that the client must request
receiving updates for forecasts and/or connections.

Communication
The communication flow for the LiveUpdates-Services is mainly from server to client. The server
sends updated data to the client so that it can update its passenger information.

Requirements
In order that the server knows which live data must be sent to which client (train) the client
must implement the TrainBinding-service.

MPI Documentation 16

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

3.3.5 Stop On Demand

The stop on demand service enables mobile passenger information systems to receive
information about requested stops at stations that have conditional halts.

This can be useful for DiLoc|Motion to send stop requests to the HMI of the driver so that he
can see that a stop is needed at a particular station. It can also be used the other way round, so
that DiLoc|Rail knows that a stop was requested from inside the train, so that this information is
also available on the stationary side.

Status
The StopOnDemand-Service is currently in status RC. This means that service description is near
final and there are no planned or expected changes to how the service works. However if there
are any problems found it is still possible to change the specification.

The used messages in this service are stoprequest
('stoprequest
Element'
in
the
on-line
documentation) and stoprequestconfirmation
('stoprequestconfirmation
Element'
in
the
on-line
documentation).

Communication
The communication flow for the StopOnDemand-Service can be from server to client, or from
client to server. One side sends a stop-request message, and the other end confirms the
received-stop-request.

If the DiLoc|Motion server receives a stoprequest it makes sure that this is not bounced back as
new stoprequest to the client.

Requirements
In order that the server knows which stoprequest must be sent to which client (train) the client
must implement the TrainBinding-service.

Stop-requests are really time sensitive. This means they should be processed as fast as possible
by the client so that the time that passes between a customer presses the stop button until the
stop-request is displayed in the HMI of the driver is kept as minimal as possible.

If the client receives stop-requests it must make sure to not bounce back the received stop-
request as new stop-request to the server, otherwise endless communication loops can happen.

3.3.6 Schedule Update

MPI Documentation 17

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

This service provides the possiblity to notify a client that new schedule data is ready to be
downloaded.

Status
The ScheduleUpdate-Service is currently in status Final. This means that service description is
final and no changes are currently planned.

Used Messages
This service uses the messages scheduleupdate
('scheduleupdate
Element'
in
the
on-line
documentation) and scheduleupdatestatus
('scheduleupdatestatus
Element'
in
the
on-line
documentation).

Communication
The communication flow for this service is mainly from server to client. The server sends a
scheduleupdate message to the client and the client answers with one or more
scheduleupdatestatus messages.

Requirements

3.3.7 On demand schedules

Introductionary Text

Status
The on demand schedules service is currently in status Final. This means it is still in the
development phase and changes can occur with further revisions of the specification.

Used Messages
This service uses the messages requesttrainschedule
('requesttrainschedule
Element'
in
the
on-line
documentation) and requesttrainschedulereply
('requesttrainschedulereply
Element'
in
the
on-line
documentation).

Communication
The communication flow for the on demand schedule service is mainly from client to server. The

MPI Documentation 18

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

client requests the schedule for a certain train and the server answers if a train could be found
or not. Depending on the requested format the train schedule is either directly delivered in the
reply or a seperate schedule update is sent to the client.

Requirements
If the client does not support the diloc schedule format the client must additionally implement
the schedule update service.

3.3.8 Display Control

The DisplayControl-service provides ways for the server to switch all displays in a train dark or
display additional text on the displays.

Status
The DisplayControl-service is currently in status Beta. This means it is still in the development
phase and changes can occur with further revisions of the specification.

Used Messages
This service uses the displaycommand
('displaycommand
Element'
in
the
on-line
documentation) and displaycommandconfirmation
('displaycommandconfirmation
Element'
in
the
on-line
documentation) message.

Communication
The flow of communication is initiated from server to client. The server sends a
displaycommand to the client and the client replies with a displaycommandconfirmation.

Requirements
In order that the server knows which live data must be sent to which client (train) the client
must implement the TrainBinding-service.

3.3.9 Audio Control

The AudioControl-service provides ways for the server to make ad hoc announcements or mute

MPI Documentation 19

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

all audio devices on a train.

Status
The AudioControl-service is currently in status Beta. This means it is still in the development
phase and changes can occur with further revisions of the specification.

This service is currently planned for implementation in DiLoc 2.7.

Used Messages
This services uses the message audiocommand
('audiocommand
Element'
in
the
on-line
documentation) and audiocommandconfirmation
('audiocommandconfirmation
Element'
in
the
on-line
documentation).

Communication
The flow of communication is initiated from server to client. The server sends an
audiocommand to the client and the client replies with an audiocommandconfirmation.

Requirements
In order that the server knows which live data must be sent to which client (train) the client
must implement the TrainBinding-service.

3.3.10 Diagnostics

The Diagnostics-service provides ways for the train to send diagnostic information to the server.
This diagnostic data is transferred with an extendable key-value system so that the client can
easily specify the data to send on its own.

Status
The Diagnostics-service is currently in status Beta. This means all messages are defined and no
changes are currently planned. But if needed during implementation it is possible to change the
messages.

This service is currently planned for implementation in DiLoc 2.7.

Used Messages
This service uses the messages systemstatus
('systemstatus
Element'
in
the
on-line

MPI Documentation 20

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

documentation) and systemstatusreply
('systemstatusreply
Element'
in
the
on-line
documentation).

Communication
The communication flow is from client to server. The client sends its current status in a
systemstatus message and the server replies with a systemstatusreply.

Requirements
The client should make sure that the systemstatus is sent at least once per system-startup. This
may either be once per boot or once per startup of the process that implements the mpi-
interface.

This allows the server to get to know about software version changes and other status change.s

3.3.11 Driver Message

The Driver message service allows to send messages to the driver. These messages should be
displayed to the driver and may contain important information.

The server may request a confirmation for a message and the client should then let the user
confirm the reception of the message via at least an additional button to confirm that he read
the message.

Status
The Driver message service is currently in status Beta. This means it is still in the development
phase and changes can occur with further revisions of the specification.

Used Messages
This service uses the messages drivermessage
('drivermessage
Element'
in
the
on-line
documentation) to send a text message to the driver and drivermessagestatus
('drivermessagestatus
Element'
in
the
on-line
documentation) so that the client can update
the server regarding the status of a received drivermessage.

Communication
The communication flow for the Driver message service is mainly from server to client. The
server sends a drivermessage to the client if there is a message and the client responds with the
drivermessagestatus message.

MPI Documentation 21

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

Requirements

3.4 Transports

3.4.1 WebSocket Transport

This topic contains these sections:

Introduction
Hostname
and
Port
SSL-Support
Connection
management
Messaging
basics

Introduction
The WebSocket transport is the main transport to transfer the MobilePI-Data between server
and client.

It is based on the official Websocket specification.

Hostname and Port
The server is normally reached via a hostname defined beforehand. The port is not a a standard
HTTP-Port but a different one. For clients implementing the protocol it must be possible to
configure to which hostname and port the client should connect.

SSL-Support
The client must be able to connect to the DiLoc|Rail WebSocket server via SSL and with a
standard unencrypted connection. For testing purposes the server is normally run without SSL,
and later when the production server is set up SSL-Support is enabled.

Connection management
The connection between the DiLoc|Rail server and the client is always established from the
client. In mobile networks (GPRS/3G/4G) it is normally not possible to establish a connection to
a mobile device from the internet because all mobile devices are in private networks

MPI Documentation 22

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

http://tools.ietf.org/html/rfc6455

behind gateways. In order to have a persistent connection to the server the client must always
try to reconnect to the server as soon as it detects a connection failure. Normally it is difficult to
detect network failures automatically when they happen. So if the client is not sending data in
regular intervals it should at least send a ping-message regularly to be able to detect network
problems reliably.

Messaging basics
For ease of use the protocol is basically stateless. That means there is no need to send any
handshake messages after setting up a connection. If the connection is established the server
and the client should be ready to send and receive any valid message.

Each WebSocket Message should contain exactly one XML-message
('message
Element'
in
the
on-line
documentation). The message-tag is the common wrapper around everything that
is exchanged between server and client. Each message contains exactly one tag that identifies
the data that is sent in the message. For each tag that is sent in either direction there normally
exists a corresponding reply-tag that is used to reply to a given message. For example the
gpsdata
('gpsdata
Element'
in
the
on-line
documentation)-tag is sent from the client to the
server and the server replies witha gpsdatareply
('gpsdatareply
Element'
in
the
on-line
documentation)-tag. There are tags that may be sent in each direction and there are tags that
are only sent in one specific direction. The schema documentation explains in which direction a
certain tag may be sent.

Processing on the Server
1. When a message is received at the server it is first checked if the message contains valid

XML. If not, a reply
('reply
Element'
in
the
on-line
documentation) is sent with an error
('error
Element'
in
the
on-line
documentation).

2. If the xml is valid it may be validated against the XML-Schema to prove that it is valid. If it
is not valid the corresponding reply-tag is sent back containing the error of type
validation.

3. If the xml could be validated, the auth-hash is checked against all valid auth hashes to be
able to authenticate the message coming from a valid connection partner and device. If
not a corresponding reply-tag is sent back containing an error of type authfail.

4. If the auth-hash could be validated the message is processed by the server. While
processing the message it could be that some of the received data is invalid, in this case
an error of type datainvalid is sent back to the client. If something other happens on the
server an error of type fail is sent to the client.

5. If everything could be processed as expected a reply with a success tag is sent back.

Asynchronity

MPI Documentation 23

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

Since all message-replies can be assigned to a corresponding message the protocol allows for
multiple messages of different types to be sent directly after each other without waiting for a
reply. On the other hand this means that the next message of the same type must only be sent
after a reply to the last message was received. So when a gpsdata-message is sent, the client
must wait for a gspdatareply-message from the server before the next gpsdata-message can be
sent. But it is for example possible to send a ping-message (or any other message) while waiting
for the gpsdatareply.

When sending multiple messages of different type shortly after each other it may be
difficult to correlate the corresponding message if the XML is invalid and not parseable by
the server, because in this case it would be impossible to send the correct reply-tag back to
the client.

MPI Documentation 24

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

4 DiLoc JSON Schedule Format

4.1 Introduction

The DiLoc JSON Schedule Format is a JSON-based format that describes the schedule of trains
like they are provided for the DiLoc|OnBoard software.

The format mainly consists of an array of trains and is documented in detail in DiLoc JSON
Schedule Format Schema.

Trains
Every train contains information about the train (like train-number, departure-time etc,) and all
the stations the train will travel to.

The train also contains a script (Drehbuch in German) that controls the different passenger
information channels (like indoor tft displays, side and front led displays, audio equipment, etc).

Script
The script contains information that controls what a train outputs in certain situations. It is a
sub-object of the train object. A script is contained in every train schedule.

The script-object contains an array of tracks.

Track Objects
Every track object contains the information that should be output on the corresponding
channel. Every track object contains the following members:

type: The type identifying the track/channel.
identifier: The identifier that identifies the channel. This is unique per script. It allows a
channel to have identifier-specific configuration.
startCommands: An array of commands that should be processed when the train is bound.
stations: An array of station-related commands that should be processed

Station Objects
The station-object is repeated in the stations-array. All stations are ordered in the direction of
travel. It begins with the starting station and ends with the destination station.

It contains the following members:

MPI Documentation 25

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

http://json.org/

station: The ID-Code of the station that this object belongs to.
commands: An array of command-objects that should be processed by the channel

Command Objects
Command objects are the heart of the script. Commands specify what a given channel should
output at any given time. It contains the following members:

name: The name of the command.
[params]: The parameters to the command, may be non-existing if the command needs
no parameters.
on: Where the command should be triggered. This is either a negative number or a
positive number meaning before and after a station. There are also some constants
possible that are explained in the schema.

The data contained in the params-object depends upon the channel-type and the name of the
command.

Every channel-type defines its own set of commands and command-parameters it understands.

The Track-type "tft"
This explains all commands that are allowed in the track type "tft".

Command
showEmpty

This command shows an empty pearl-chain. This means the pearl-chain view is used but with
empty data. This has the effect that the blue bars are shown at the top and bottom but there is
no text content shown.

Command
showPearlChain

Shows the pearl-chain. This shows the current pearl-chain based on the current position. In
contrast to other commands of other channels this is an intelligent command that auto-updates
the pearl-chain in case something happens (like advancing to the next station, etc).

Command
showConnections

This shows the connections at the station the command is contained in. This is also an
intelligent command as it automatically uses the connections defined in the train schedule or
updated schedules if they are available.

Command
showMessage

This shows a special message. This will be used for predefined messages. How these will be
handled exactly is TBD.

MPI Documentation 26

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

Command
showBlack

This shows a black screen and can be used if no train is selected, etc.

The Track-type "led"
This explains all valid commands in the track type "led". This track-type is used to control LE-
displays.

Command
showText

Shows the given text on the LE-Displays. What happens with text that is too long must be
configured on the client side. There are probably two ways to handle longer text: Either scroll
the text, or cut it off. Fonts to use and Font-sizes are also to be configured on the client level
and are on purpose not contained in the script because the server generating the script should
not need to care about this.

The allowed parameters are documented in detail in the schema.

Command
showDestination

Shows the given destination information on the LE-Displays.

How the passed information is displayed for a given track is client dependent. For example a
front-led normally never shows via-stations and just ignores the information. The line is
normally shown in inverted colors on the left side. The destination is normally shown centered.
All this information is configured on the client level and is nothing that can be controlled from
the script.

The allowed parameters are documented in detail in the schema.

Command
clear

Clears the display and outputs nothing.

The track-type "audio"
This explains all valid commands in the track-type "audio". This track-type is used to control
audio output in trains.

Command
enqueueText

This command enqueues a text that should be spoken via TTS (Text To Speech).

The allowed parameters are documented in detail in the schema.

Command
enqueueFiles

This command enqueues a list of files that should be played in order. This is used to play files of

MPI Documentation 27

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

pre-recorded announcements.

The allowed parameters are documented in detail in the schema.

Command
clearQueue

This command clears the current queue. If there is currently an announcement ongoing it is not
aborted.

Example Train
This example shows a train traveling from St. Gallen (SGAB) to Trogen (TROG) via Speicher
(SPEI). In reality there are more stations in between these stations but for simplicity reasons they
where ommited.

The script contains four tracks:

One of type "led" for the side-led's.
One of type "led" for the front/back-led's
One of type "tft" for the indoor tft-displays.
One of type "audio" for the announcements during the drive.

{
 "trains": [
 {
 "trainNumber": "4711.15a",
 "script": {
 "tracks": [
 {
 "type": "led",
 "identifier": "side",
 "startCommands": [
 {
 "name": "showDestination",
 "params": {
 "line": "S21",
 "destination": "Trogen",
 "via": [
 "Speicher"
]
 }
 }
],
 "stations": [
 {
 "station": "SPEI",
 "commands": [
 {
 "name": "showDestination",

MPI Documentation 28

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

 "params": {
 "line": "S21",
 "destination": "Trogen",
 "via": []
 },
 "on": "-200"
 }
]
 },
 {
 "station": "TROG",
 "commands": [
 {
 "name": "showDestination",
 "params": {
 "line": "S21",
 "destination": "St. Gallen",
 "via": [
 "Speicher"
]
 },
 "on": "-200"
 }
]
 }
]
 },
 {
 "type": "led",
 "identifier": "front",
 "startCommands": [
 {
 "name": "showDestination",
 "params": {
 "line": "S21",
 "destination": "Trogen",
 "via": [
 "Speicher"
]
 }
 }
],
 "stations": [
 {
 "station": "TROG",
 "commands": [
 {
 "name": "showDestination",
 "params": {
 "line": "S21",
 "destination": "St. Gallen"
 },
 "on": "-200"

MPI Documentation 29

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

 }
]
 }
]
 },
 {
 "type": "tft",
 "identifier": "pis",
 "startCommands": [
 {
 "name": "showPearlChain"
 }
],
 "stations": [
 {
 "station": "SPEI",
 "commands": [
 {
 "name": "showConnections",
 "on": "-500"
 },
 {
 "name": "showPearlChain",
 "on": "halt"
 }
]
 }
]
 },
 {
 "type": "audio",
 "identifier": "default",
 "stations": [
 {
 "station": "SGAB",
 "commands": [
 {
 "name": "enqueueText",
 "params": {
 "text": "Herzlich Willkommen in der Trogener Bahn nach Trogen.",
 "lang": "de"
 },
 "on": "100"
 }
]
 },
 {
 "station": "SPEI",
 "commands": [
 {
 "name": "enqueueText",
 "params": {
 "text": "Nächster Halt Speicher.",

MPI Documentation 30

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

 "lang": "de"
 },
 "on": "-400"
 }
]
 },
 {
 "station": "TRO",
 "commands": [
 {
 "name": "enqueueText",
 "params": {
 "text": "Nächster Halt Trogen. Dieser Zug endet in hier. Wir
bitten alle Fahrgäste auszusteigen und bedanken uns für die Fahrt mit der Trogener
Bahn.",
 "lang": "de"
 },
 "on": "-500"
 }
]
 }
]
 }
]
 },
 "departureTime": "15:34:30",
 "nextTrainNumber": "4711",
 "travelsOnDays": [
 "mo",
 "fr",
 "sa",
 "su"
],
 "stations": [
 {
 "station": "SGAB",
 "timeTableDepartureTime": 0,
 "stopType": "departure"
 },{
 "station": "SPEI",
 "timeTableArrivalTime":7200,
 "timeTableDepartureTime":7290,
 "stopType": "halt",
 "connections": [
 {
 "departureTime": "2014-07-06 15:45:00",
 "destination": "Katzwiler",
 "category": "bus",
 "line": "130",
 "platform": "B"
 }
]
 },{

MPI Documentation 31

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

 "station": "TROG",
 "timeTableArrivalTime": 14000,
 "stopType": "arrival"
 }
]
 }
]
}

4.2 Schema

This contains the complete JSON Schema of the DiLoc JSON Schedule format.

Currently this is hosted online so you will only see this if you have an internet connection.

MPI Documentation 32

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

http://json-schema.org/

5 Index

,

0

Audio
Control,

19-20

Authentication,

9-10

Change
Log,

5-9

Diagnostics,

20-21

Display
Control,

19

Driver
Message,

21-22

General
Information,

3

GPS
Service,

10-11

Introduction,

25-32

Introduction
to
the
Mobile-PI-Interface,

4-5

Logical
Positioning,

11-13

MobilePI

Authentication, 9-10

Change Log, 5-9

General Information, 3

Introduction to the Mobile-PI-Interface, 4-5

On
demand
schedules,

18-19

Schema,

32

SSL,

22-24

Stop
On
Demand,

17

Train
Binding,

13-15

WebSocket,

22-24

WebSocket
Transport,

22-24

MPI Documentation 33

 © 2012 - 2021 CN-Consult GmbH. MPI Version 1.4.2. - All Rights Reserved.

	Table of Contents
	General Information
	Introduction to the Mobile-PI-Interface
	Change Log
	Authentication
	Services
	GPS Service
	Logical Positioning
	Train Binding
	Live Updates
	Stop On Demand
	Schedule Update
	On demand schedules
	Display Control
	Audio Control
	Diagnostics
	Driver Message

	Transports
	WebSocket Transport

	DiLoc JSON Schedule Format
	Introduction
	Schema

	Index

